
Ubuntu i filosofia hacker Iera.part

Esteve Llorens

15 de maig de 2014

Esteve Llorens Ubuntu i filosofia hacker Iera.part

Filosofia UNIXTM (Gnu/Linux/Posix)

Quina imatge tenim d’un hacker?

Veure http://hackertyper.net/

Esteve Llorens Ubuntu i filosofia hacker Iera.part

La filosofia del text pla

Text pla legible per humans vs. fitxers binaris legibles només per
màquines. El text pla és una interf́ıcie universal; és a dir, que pot
permetre que els programes interactuen fàcilment entre ells en
forma de sortides de text i entrades, en contrast amb la dificultat
que tindrien si cada utilitzar formats binaris mútuament
incompatibles i perquè aquests arxius poden ser fàcilment interf́ıcie
amb els éssers humans. Això últim significa que és fàcil per als
éssers humans per estudiar, corregir, millorar i ampliar aquest tipus
d’arxius.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

La filosofia del text pla II

El sistema Gnu/Linux és una veritable màquina de text on gairebé
tot és editable. Treballar amb sistemes de maquetació textuals i
oberts, garantitza l’accés i l’edició als arxius fonts per sempre més
amb independència de la màquina, sistema i programa d’edició. A
més, aquesta filosofia de treball s’adapta plenament a l’actual
paradigma d’automatització, bigdata i cloud computing, ja que els
arxius de text pla poden ser llegits, editats, processats i formatats
de forma programada per scripts d’automatització, poden ser
analitzats i tabulats des del punt de vista lexicogràfic i de dades a
processar i poden ser finalment, accedits remotament a servidors
en el núvol via SSH.

És per tant una forma de treball que garanteix més que cap altre,
la supervivència de les fonts originals i l’accés sense �data de
caducitat�. El text pla sempre serà accessible i editable arreu.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

Principis de la filosofia UNIX

Una definició

The Unix philosophy is a set of cultural norms and philosophical
approaches to developing software based on the experience of
leading developers of the Unix operating system.

Conjunt de normes culturals i enfocaments filosòfics per al
desenvolupament de petits però capaços de programari, basats en
l’experiència dels programadors originaris del S.O. UNIX (Ken
Thompson principalment). La filosofia Unix emfatitza la
construcció de codi curt, senzill, clar, modular i extensible que es
pot mantenir i reutilitzar per altres desenvolupadors. La filosofia es
basa en componibles que interactuen amb tuberies.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

Filosofia UNIXTM (Gnu/Linux/Posix)

Componible?

[1839; de pondre] adj Que pot ésser compost. Dicc. Enciclopedia
Catalana (Composable, en anglès)

La més coneguda d’aquestes interf́ıcies, i una de les innovacions
més importants de UNIX, és la canonada . Representat per la
barra vertical de caràcters en les ordres teclejats per l’usuari, tubs
permeten la combinació de programes de manera que la sortida
d’un es converteix en l’entrada d’un altre. Aquestes canonades
d’ordres fan que sigui possible dur a terme fàcilment les operacions
altament especialitzades que seria dif́ıcil o pràcticament impossible
l’ús d’un sistema no modular.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

Context historic

La filosofia Unix va créixer fora de la meta original disseny de
UNIX, que era crear un sistema operatiu que era tan simple i eficaç
com sigui possible. Aquesta meta va ser una reacció al que
Thompson considera correctament com la innecessària complexitat
dels sistemes operatius que estaven en ús en aquell moment.
Aquesta complexitat es relaciona amb el fet que no hi havia un
sistema operatiu estàndard que es podria utilitzar en una àmplia
varietat d’ordinadors; més aviat, cada fabricant d’equip va
desenvolupar un sistema operatiu independent per al seu propi
maquinari.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

Context històric II

La filosofia Unix és al centre, no només l’original UNIX
desenvolupat per Ken Thompson en els Laboratoris Bell de 1969,
sinó també dels seus nombrosos descendents directes i els clons ,
incloent Solaris, els sistemes BSD 1 i Linux . Els ha fet, a què es
refereix col·lectivament com Unix sistemes operatius , en el que
són àmpliament considerats com els millors sistemes operatius 2
que han estat desenvolupats fins ara, malgrat el fet que són amb
diferència els sistemes operatius més antics d’ús generalitzat, i ha
estat un factor important en el ràpid creixement i creixent èxit de
Linux .

No hi ha una sola declaració, estandarditzada de la filosofia. Però
si hagués de ser descrit amb només una sola paraula, aquesta
paraula seria modularitat , que es refereix a un sistema que es
compon de components (és a dir, mòduls) que es poden muntar
junts o disposats en una varietat de maneres.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

Filosofia del programari lliure Gnu/Linux

Programari lliure vol dir que els usuaris del programa tenen
llibertat. (No és una qüestió de preu.) �Vàrem desenvolupar el
sistema operatiu GNU per tal que els usuaris puguin conservar la
seva llibertat en l’àmbit de la informàtica.�

Concretament, el programari lliure significa que els usuaris tenen
quatre llibertats essencials: (0) executar el programa, (1) estudiar i
canviar el codi font del programa, (2) distribuir còpies idèntiques i
(3) distribuir versions modificades.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

L’Entorn de Programació UNIX

�Tot i que el sistema UNIX introdueix una sèrie de programes i
tècniques innovadores, hi ha un programa únic o idea que fa que
funcioni bé. En el seu lloc, el que el fa efectiu és l’enfocament de
la programació, una filosofia d’ús de l’ordinador. Encara que la
filosofia no pot ser escrit en una sola frase, en el fons és la idea
que el poder d’un sistema ve més de les relacions entre els
programes que dels propis programes. Molts programes de UNIX
fan coses bastant trivials de manera äıllada, sinó que, combinats
amb altres programes, esdevenen eines generals i útils.� (1984)
Brian Kernighan i Rob Pike.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

La filosofia UNIX en essència:

Segons (Doug McIlroy) [Bell LABS, resp. de les pipes]:

This is the Unix philosophy: Write programs that do one thing and
do it well. Write programs to work together. Write programs to
handle text streams, because that is a universal interface.

Aquesta és la filosofia Unix: Escriure programes que fan una cosa i
per fer-la bé. Escriure programes per treballar junts. Escriure
programes per gestionar fluxos de text, ja que el text és una
interf́ıcie universal.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

Filosofia del shell scripting

Historia del Bourne shell (sh) . .

Definicions i conceptes del shell .

Comparativa de shells

Shells vs. terminals

Terminals virtuals i emulació

El paradigma A.B.C.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

Filosofia del shell scripting II

Shell scripting hearkens back to the classic UNIX philosophy of
breaking complex projects into simpler subtasks, of chaining
together components and utilities. Many consider this a better, or
at least more esthetically pleasing approach to problem solving
than using one of the new generation of high-powered all-in-one
languages, such as Perl, which attempt to be all things to all
people, but at the cost of forcing you to alter your thinking
processes to fit the tool.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

La filosofia UNIX segons Mike Gancarz

Llibre ‘The UNIX Philosophy’ (1994) Mike Gancarz drew on his
own experience with Unix, as well as discussions with fellow
programmers and people in other fields who depended on Unix, to
produce The UNIX Philosophy which sums it up in 9 paramount
precepts:

Small is beautiful. El petit és bonic.

Make each program do one thing well. Feu que cada programa faci
una cosa bé.

Build a prototype as soon as possible.

Construir un prototip tan aviat com sigui possible.

Choose portability over efficiency. Tria la portabilitat sobre
l’eficiència.

Store data in flat text files. Emmagatzemar dades en plans arxius
de text .

Use software leverage to your advantage.

Utilitzeu palanquejament programari per a la seva avantatge.

Use shell scripts to increase leverage and portability. Utilitzeu els
scripts de shell per augmentar el palanquejament i la portabilitat.

Avoid captive user interfaces. Eviteu les interf́ıcies d’usuari en
captivitat.

Make every program a filter.

Fer cada programa una filtre .

Esteve Llorens Ubuntu i filosofia hacker Iera.part

Dites famoses sobre filosofia UNIX

“Unix és simple. Només cal ser un geni per entendre la seva
simplicitat.” - Dennis Ritchie “Unix no va ser dissenyat per posar
fi als seus usuaris fer coses estúpides, ja que això també que deixin
de fer coses intel · ligents.” - Doug Gwyn “Unix mai diu” si us
plau “.” - Rob Pike “Unix és fàcil d’utilitzar. Simplement no és
proḿıscua sobre els quals els usuaris que és amigable amb l’.” -
“Steven King, Programari arqueòleg” [9] “Aquells que no entenen
Unix estan condemnats a reinventar, malament.” - Henry Spencer

Esteve Llorens Ubuntu i filosofia hacker Iera.part

Evitem confusions

La filosof́ıa Unix no es una metodologia formal de programació.

* No utiliza la teorı́a de la computación para obtener \teóricamente un software perfecto".

* Su programación es de \abajo hacia arriba: bottom up".

* Es de conocimiento pragmático.

* Basado en el conocimiento Empı́rico o Experiencia.

* No se encuentra en los métodos y las normas oficiales, sino en el medioreflexivo implı́cito el conocimiento.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

Eric Raymond i la filosofia UNIX

Principi KISS

En el seu llibre L’art de la programació Unix que va ser publicat
per primera vegada el 2003, [5] Eric S. Raymond , un programador
nord-americà i defensor de codi obert, resumeix la filosofia Unix
com principi KISS de “Mantenlo simple, estúpid”. [6] Ell
proporciona una sèrie de regles de disseny: [7]
Regla de Modularitat : Els desenvolupadors han de construir un
programa de parts simples connectades per interf́ıcies ben
definides, aix́ı que els problemes són locals, i parts del programa
poden ser reemplaçats en futures versions per suportar noves
caracteŕıstiques. Aquesta norma té com a objectiu estalviar temps
en la depuració de codi que és complex, llarg, i és il · legible.
Regla de Claredat: Els desenvolupadors han d’escriure programes
com si la comunicació més important és el desenvolupador,
incloent si mateixos, que llegirà i mantenir el programa en lloc de
l’ordinador. Aquesta norma té com a objectiu fer que el codi
llegible i comprensible per a qui treballa en el codi en el futur.
Regla de Composició: Els desenvolupadors han d’escriure
programes que poden comunicar fàcilment amb altres programes.
Aquesta norma té per objecte permetre als desenvolupadors
descomponen projectes en els programes de petites i senzilles en
lloc de programes monoĺıtics excessivament complexos.
Regla de Separació: Els desenvolupadors de separar els mecanismes
dels programes de la poĺıtica dels programes; un mètode consisteix
a dividir un programa en una interf́ıcie de front-end i back-end del
motor que es comunica amb la interf́ıcie. Aquesta norma té per
objecte permetre que les poĺıtiques poden canviar sense
mecanismes de desestabilització i conseqüentment reduir el nombre
d’errors.
Regla de Simplicitat: Els desenvolupadors han de dissenyar per
simplificar, mitjançant la recerca de formes de trencar els sistemes
del programa en petits trossos que cooperen senzilles. Aquesta
norma té per objecte descoratjar l’afecte dels desenvolupadors per
escriure “complexitats intricades i belles” que són en realitat
programes propenses errors.
Regla de parsimònia: Els desenvolupadors han d’evitar escriure
programes grans. Aquesta norma té per objecte prevenir l’excés
d’inversió del temps de desenvolupament dels enfocaments fallits o
subòptimes causats pels propietaris de la reticència del programa
de tirar visiblement grans peces de treball. Programes més petits
no només són més fàcils d’optimitzar i mantenir; són més fàcils
d’eliminar quan obsolet.
Regla de Transparència: Els desenvolupadors han de dissenyar per
a la visibilitat i capacitat de descobriment de l’escriptura d’una
manera que el seu procés de pensament lúcid pot ser vist pels
desenvolupadors de futurs treballen en el projecte i l’ús de formats
d’entrada i de sortida que fan que sigui fàcil d’identificar d’entrada
vàlid i la sortida correcta. Aquesta norma té com a objectiu reduir
el temps de depuració i estendre la vida útil dels programes.
Regla de Robustesa: Els desenvolupadors han de dissenyar
programes robustos mitjançant el disseny de transparència i el
descobriment, ja que el codi que sigui fàcil d’entendre és més fàcil
destacar prova per a condicions inesperades que poden no ser
previsible en programes complexos. Aquesta norma té com a
objectiu ajudar als desenvolupadors a crear productes fiables
robustes.
Regla de Representació: Els desenvolupadors han de triar per fer
les dades més complicada i no la lògica de procediment del
programa quan s’enfronten a l’elecció, perquè és més fàcil per als
éssers humans per entendre dades complexes en comparació amb
una lògica complexa. Aquesta norma té com a objectiu fer que els
programes més llegibles per a qualsevol desenvolupador que treballa
en el projecte, el que permet que el programa es mantindrà. [8]
Regla de la Mı́nima Sorpresa: Els desenvolupadors han de dissenyar
programes que construeixen a la part superior de coneixements dels
potencials usuaris s’esperava; per exemple, ‘+’ sempre ha de
significar, a més d’un programa de calculadora. Aquesta norma té
com a objectiu animar els desenvolupadors a construir productes
intüıtius i fàcils d’utilitzar. Regla del Silenci: Els desenvolupadors
de dissenyar programes perquè no s’imprimeixen sortida
innecessària. Aquesta norma té per objecte permetre que altres
programes i desenvolupadors per recollir la informació que
necessiten de la sortida d’un programa sense haver d’analitzar la
verbositat.
Regla de Reparació: Els desenvolupadors han de dissenyar
programes que no d’una manera que és fàcil de localitzar i
diagnosticar o dit d’una altra manera “a prova sorollosament”.
Aquesta regla té com a objectiu evitar una sortida incorrecta d’un
programa esdevingui una entrada i corrompre la sortida d’un altre
codi sense ser detectats. Estat d’Economia: Els desenvolupadors
han valoren temps de desenvolupament en el temps de la màquina,
ja que els cicles de la màquina a partir de l’any 2014 són
relativament barats en comparació amb els preus en la dècada de
1970. Aquesta norma té per objecte reduir els costos de
desenvolupament dels projectes.
Regla de Generació : Els desenvolupadors han d’evitar escriure codi
a mà i en lloc d’escriure programes d’alt nivell abstractes que
generen codi. Aquesta norma té com a objectiu reduir els errors
humans i estalviar temps.
Regla de Optimització : Els desenvolupadors han de crear prototips
de programari abans de polir. Aquesta norma té per objecte evitar
que els desenvolupadors de passar massa temps perquè els guanys
marginals. Estat de la Diversitat: Els desenvolupadors de dissenyar
els seus programes per a ser flexible i oberta. Aquesta norma té
com a objectiu fer que els programes flexibles, el que els permet ser
utilitzats en altres formes que els seus desenvolupadors pretenen.
Regla de Extensibilitat: Els desenvolupadors de dissenyar per al
futur fent els seus protocols extensible, el que permet plugins fàcil
sense modificacions a l’arquitectura del programa per altres
desenvolupadors, prenent nota de la versió del programa, i més.
Aquesta norma té com a objectiu ampliar la vida útil i millorar la
utilitat del codi del desenvolupador escriu.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

Més sobre filosofia UNIX

Es un conjunto de “pensamientos” o proposiciones que alguien
podria catalogar como reglas, las que son aplicables al desarrollo de
software en el ámbito Unix, se basa en la experiencia, simplicidad,
reinvención y rapidez en el desarrollo. Estos son un conjunto de
enunciados simples y básicos de ideas que se traducen en
caracteŕısticas que poseen los diferentes programas que corren en
Unix, bueno a almenos con esa ideoloǵıa se creó la filosof́ıa Unix.

La Filosof́ıa UNIX supone crear programas rápidos, simples, con
poca intervención por parte del usuario, o en caso de necesitarla,
esta se produzca al princip̀ıo o lo más ḿınima posible. Esta se
acopla perfectamente a las necesidades de computación de los
laboratorios cientificos, puesto que Unix fue originalmente
desarrollado en uno de estos.

A continuación algunas premisas:

Que cada programa realice unicamente la tarea para la que fue creado y la haga bien.

Para llevar a cabo una nueva tarea escribe un programa nuevo. No compliques uno viejo a~nadiendo nueva funcionalidad.

Escribe tu programa teniendo en cuenta que su salida probablemente sea la entrada de otro programa.

Guarda los datos en archivos de texto plano. Si necesitas seguridad, confı́a en los permisos.

Usa nombres cortos y en minúscula.

En la manera de lo posible haz que el usuario suministre los datos por lı́nea de comandos en la llamada.

Haz partes simples conectadas mediante interfaces limpias y bien definidas.

Céntrate en los datos.

Claridad mejor que complejidad. La solución más simple es frecuentemente la mejor.

Portabilidad mejor que eficiencia.

Piensa en paralelo. Hay otros procesos en el mundo, incluso instancias de tu mismo programa funcionando al mismo tiempo.

Hacer programas grandes, solo cuando se demuestre que no se puede realizar con uno peque~no.

Si no hay nada interesante que decir, que el programa mejor no diga nada.

Para cada problema existen múltiples soluciones.

Dise~na pensando en el futuro (esta cercano). Esto nos ofrece compatibilidad y mayor tiempo de utilización.

Programa de abajo hacia arriba y de conocimiento pragmático.

Progama basado en el conocimiento Empı́rico o Experiencia.

No se encuentra en los métodos y las normas oficiales, sino en el medio-reflexivo implı́cito, el conocimiento.

En resumidas cuentas la filosof́ıa Unix se puede describir como bien
lo dice Doug Mcllroy:

“Escribe programas que hagan una cosa y la hagan bien, que
trabajen en armońıa con otros y que manejen flujos de texto, pues
esta es una interfaz universal.” – Doug Mcllroy

La cual por lo general se abrevia a “Haz una cosa, hazla bien”.

Cabe mencionar que con el paso del tiempo (y estoy de acuerdo en
eso) esta filosof́ıa ha ido en decadencia en varios descendientes de
Unix, esta filosfia se ha perdido y han apostado mas por la
interacción visual con el usuario, un mal manejo de recursos y mas
clicks antes que el uso de una consola. Aunque claro, estas
afirmaciones son bastante cuestionables, pues es sabido que han
sido uno de los medios por los cuales los sistemas basados en Unix
(y por tanto en su filosof́ıa) han podido abarcar mas mercado en la
actualidad.

“Aquellos que no pueden entender UNIX, estan condenados a
reinventarlo, pobremente.”

Henry Spencer, 1987

Doug McIlroy, el inventor de las tubeŕıas Unix y uno de los
fundadores de la tradición Unix, soĺıa decir:

(i) Haz que cada programa haga bien una sola cosa. Para hacer una nueva tarea, construye un nuevo programa en lugar de complicar los viejos agregándole nuevas funcionalidades.

(ii) Espera que la salida de cada programa se convierta en la entrada para otro programa, aunque éste sea desconocido. No satures la salida con información extra~na. Evita firmemente los formatos de entrada columnar o binaria. No insistas en la entrada interactiva.

(iii) Dise~na y construye software, incluso sistemas operativos, para ser probados pronto, idealmente en semanas. No titubees en desechar las partes torpes y chapuceras y reconstruirlas.

(iv) Usa herramientas en preferencia a la ayuda no especializada para aclarar una tarea de programación, incluso si tienes que desviarte para construir las herramientas y espera desechar algunas de ellas después de que hayas finalizado de usarlas.

Más tarde él lo resumiŕıa de esta forma (citado en A Quarter
Century of Unix [Un Cuarto de Siglo de Unix]):

Esta es la filosofı́a Unix: Escribe programas que hagan una sola cosa y la hagan bien. Escribe programas para trabajar colectivamente. Escribe programas para manejar flujos de texto, porque esta es una interface universal.

Rob Pike, quien se convirtió en uno de los grandes maestros de C,
ofrece un ángulo ligeramente diferente en Notes on C
Programming [Notas sobre la Programación en C]:

Regla 1. No puedes decir a priori dónde gastará un programa la mayor parte de su tiempo. Los cuellos de botella ocurren en lugares sorprendentes, ası́ que no intentes adivinar ni colocar un hackeo optimizador de velocidad hasta que hayas probado que es ahı́ donde está el cuello de botella.

Regla 2. Mide. No optimices buscando velocidad hasta que hayas medido, y aún entonces no lo hagas a menos que una parte del código abrume al resto.

Regla 3. Los algoritmos fantasiosos son lentos cuando n es peque~no, y n es usualmente peque~no. Los algoritmos fantasiosos tienen grandes constantes. Hasta que sepas que n va a ser frecuentemente grande, no te vuelvas fantasioso. (Aún si n se vuelve grande, usa la Regla 2 primero.)

Regla 4. Los algoritmos fantasiosos son más propensos a los errores que los simples, y son mucho más difı́ciles de implementar. Usa algoritmos simples al igual que estructuras de datos simples.

Regla 5. Los datos dominan. Si has escogido las estructuras de datos correctas y organizaste bien las cosas, los algoritmos serán casi siempre auto-evidentes. Las estructuras de datos, y no los algoritmos, son el centro de la programación.

Regla 6. No hay Regla 6.

Ken Thompson, el hombre que diseñó e implementó el primer
Unix, reforzó la regla 4 de Pike con una máxima digna de un
patriarca Zen:

Cuando tengas dudas, usa la fuerza bruta.

La mayoŕıa de la filosof́ıa Unix fue implicada no por lo que esos
mayores dijeron sino por lo que hicieron y el ejemplo que Unix
mismo estableció. Mirando al conjunto completo, podemos
abstraer las siguientes ideas:

Regla de Modularidad: Escribe partes simples conectadas por interfaces limpias.

Regla de Claridad: La claridad es mejor que la habilidad y el ingenio.

Regla de Composición: Dise~na programas para ser conectados a otros programas.

Regla de Separación: Separa la polı́tica del mecanismo; separa las interfaces de los motores.

Regla de Simplicidad: Dise~na pensando en la simplicidad; agrega complejidad solamente donde debas.

Regla de Parsimonı́a: Escribe un programa grande solamente cuando es claro por demostración que ninguna otra cosa funcionará.

Regla de Transparencia: Dise~na pensando en la visibilidad para hacer la inspección y la depuración más fácil.

Regla de Robustez: La robustez es la hija de la transparencia y la simplicidad.

Regla de Representación: Pliega el conocimiento dentro de los datos de tal manera que la lógica del programa pueda ser estúpida y robusta.

Regla de la Mı́nima Sorpresa: En el dise~no de interfaces, siempre has la cosa menos sorprendente.

Regla del Silencio: Cuando un programa no tiene nada sorprendente que decir, no deberı́a decir nada.

Regla de Reparación: Cuando debas fallar, falla ruidosamente y tan pronto como sea posible.

Regla de Economı́a: El tiempo del programador es costoso; consérvalo en preferencia al tiempo de máquina.

Regla de Generación: Evita el hackeo manual; escribe programas para escribir programas cuando puedas.

Regla de Optimización: Haz prototipos antes de pulir. Has que funcione antes que lo optimices.

Regla de Diversidad: Desconfı́a de todas las pretensiones para \una vı́a verdadera".

Regla de Extensibilidad: Dise~na para el futuro, porque estará aquı́ más pronto de lo que piensas.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

Filosofia de la deconstrucció

La filosofia hacker

Hackers solve problems and build things, and they believe in
freedom and voluntary mutual help. To be accepted as a hacker,
you have to behave as though you have this kind of attitude
yourself. And to behave as though you have the attitude, you have
to really believe the attitude.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

Segons Stallman (FSF/Gnu)

�Hacker, usando la palabra inglesa, quiere decir divertirse con el
ingenio [cleverness], usar la inteligencia para hacer algo dif́ıcil. No
implica trabajar solo ni con otros necesariamente. Es posible en
cualquier proyecto. No implica tampoco hacerlo con computadoras.
Es posible ser un hacker de las bicicletas. Por ejemplo, una fiesta
sorpresa tiene el esṕıritu del hack, usa el ingenio para sorprender al
homenajeado, no para molestarle.� Richard Stallman.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

Ètica Hacker

Según Himanen, un hacker no es un delincuente, vándalo o pirata
informático con altos conocimientos técnicos (a los que prefiere
llamar crackers), sino que hacker es todo aquel que trabaja con
gran pasión y entusiasmo por lo que hace. De ah́ı que el término
‘hacker’ pueda y deba extrapolarse a otros ámbitos como ser, por
ejemplo, el cient́ıfico. Aśı Himanen escribe,

En el centro de nuestra era tecnológica se hallan unas personas que se autodenominan hackers. Se definen a sı́ mismos como personas que se dedican a programar de manera apasionada y creen que es un deber para ellos compartir la información y elaborar software gratuito. No hay que confundirlos con los crackers, los usuarios destructivos cuyo objetivo es el de crear virus e introducirse en otros sistemas: un hacker es un experto o un entusiasta de cualquier tipo que puede dedicarse o no a la informática. En este sentido, la ética hacker es una nueva moral que desafı́a la ética protestante del trabajo, tal como la expuso hace casi un siglo Max Weber en su obra La ética protestante y el espı́ritu del capitalismo, y que está fundada en la laboriosidad diligente, la aceptación de la rutina, el valor del dinero y la preocupación por la cuenta de resultados.

Frente a la moral presentada por Weber, la ética del trabajo para el hacker se funda en el valor de la creatividad, y consiste en combinar la pasión con la libertad. El dinero deja de ser un valor en sı́ mismo y el beneficio se cifra en metas como el valor social y el libre acceso, la transparencia y la franqueza.1

Himanen, Pekka; et al (2002). La ética del hacker y el esṕıritu de
la era de la información. Editorial Destino. ISBN 84-233-3390-6.
Cita verificable en Educación para el desarrollo.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

Finalment

1 El mundo está lleno de problemas fascinantes que esperan ser
resueltos2. Ningún problema tendŕıa que resolverse dos veces

2 Ningún problema tendŕıa que resolverse dos veces

% %pandoc -t beamer rain.md -V theme:Warsaw -V
colortheme:crane -V title:‘Ubuntu i filosofia hacker Iera.part’ -V
author:‘Esteve Llorens’ -V lang:catalan -o rain.pdf %Text
attributes italic, %bold, monospace.

Esteve Llorens Ubuntu i filosofia hacker Iera.part

